Transmission Lines An Overview Presented to Wireless Society of Southern Maine WS1SM 8 December 2011 ## What is a Transmission Line? RF transmission lines are used to transfer or guide RF energy from one place to another with a minimum loss of power - Antenna to receiver - Transmitter to antenna - Connecting link between equipment # Types of Transmission Lines - Open Wire - Twin-lead (Ribbon) - Twisted Pair - Coaxial - Flexible - Rigid - Waveguide # Transmission Line Characteristics - All transmission lines share the same basic properties: - Resistance - Capacitance - Inductance - Physical Construction - These basic properties determine typical usage parameters - Basic properties determine characteristics: - Impedance (Z_O) - Attenuation (dB) - Velocity Factor (%) - Power Limitations (Max. W) - Impedance (Z_O) - Determined by Physical Properties - Frequency Independent - Material Independent - Length Independent $$Z_0 = 138 \log_{10} \frac{D}{d}$$ - Attenuation (dB/Length) - Power or Signal Loss for given Length - Determined by: - Size of conductors - Dielectric material - Length - Velocity Factor (%) - Time required for signal to propagate from one point to another in a transmission line as compared to propagation of the same distance in free space - Dielectric Material Dependent - Frequency Independent $$\lambda = \frac{V}{F} \qquad \lambda_{\text{meters}} = \frac{300,000,000}{F}$$ _ - Power Limitations - Maximum Power Limit to a Matched Line - Dielectric Dependent - Frequency Dependent - Impedance Dependent - Most often used by Hams - Convenient - Cost effective - Many different types available - OK! But, which one? - Regardless of operating frequency, all transmission lines should have the smallest possible loss for maximum signal/power transfer - Must be matched to characteristic Impedance OK, that was an infantile, evasive answer – - How do I choose a coax cable for my station? - What is the application? - What frequency below 30 MHz or above? - What power level a few watts or legal limit? - How long is the cable? - Choose from a catalog or data book (on-line) | Table 1 | | |---|--| | Nominal Characteristics of Commonly Used Transmission Lines | | | 1401111 | nai Charact | eristic | 5 01 | COIII | monly osed | mans | 11115510 | on Lines | | | | | | | |--|---|--|--|--|---|---|--|--|---|--|--|---|---|--| | RG or
Type | Part
Number | Nom. Z _o
W | VF
% | Cap.
pF/ft | Cent. Cond.
AWG | Diei.
Type | Shleid
Type | Jacket
Mati | OD
Inches | Max V
(RMS) | Mai
1 MHZ | tched Lo | oss (dB/
100 | 100)
1000 | | RG-6
RG-6 | Belden 1694A
Belden 8215 | 75
75 | 82
66 | 16.2
20.5 | #18 Solid BC
#21 Solid CCS | FPE
PE | FC
D | P1
PE | 0.275
0.332 | 600
2700 | 0.2
0.4 | 0.7
0.8 | 1.8
2.7 | 5.9
9.8 | | RG-8
RG-8
RG-8
RG-8
RG-8
RG-8
RG-8
RG-8 | Belden 7810A
TMS LMR400
Belden 9913
CXP1318FX
Belden 9913F7
Belden 9914
TMS LMR400UF
DRF-BF
WM CQ106
CXP008
Belden 8237 | 50
50
50
50
50
50
50
50
50
50
50 | 86
85
84
84
83
82
85
84
84
78 | 23.0
23.9
24.6
24.0
24.6
24.8
23.9
24.5
24.5
26.0
29.5 | #10 Solid BC
#10 Solid CCA
#10 Solid BC
#10 Flex BC
#11 Flex BC
#10 Flex BC
#10 Flex BC
#9.5 Flex BC
#9.5 Flex BC
#13 Flex BC
#13 Flex BC | FPE
FPE
ASPE
FPE
FPE
FPE
FPE
FPE
FPE
FPE
PE | FC
FC
FC
FC
FC
FC
FC
S
S | PE
PE
P1
P2N
P1
P1
PE
P2N
P1
P1 | 0.405
0.405
0.405
0.405
0.405
0.405
0.405
0.405
0.405
0.405
0.405 | 600
600
600
600
600
600
600
600
600
600 | 0.1
0.1
0.1
0.1
0.2
0.2
0.1
0.1
0.2
0.1 | 0.4
0.4
0.4
0.6
0.5
0.4
0.5
0.6
0.6 | 1.2
1.3
1.3
1.5
1.5
1.4
1.6
1.8
1.9 | 4.0
4.1
4.5
4.8
4.8
4.9
5.2
5.3
7.1
7.4 | | RG-8X
RG-8X
RG-8X
RG-8X
RG-8X
RG-8X | Belden 7808A
TMS LMR240
WM CQ118
TMS LMR240UF
Belden 9258
CXP08XB | 50
50
50
50
50
50 | 86
84
82
84
82
80 | 23.5
24.2
25.0
24.2
24.8
25.3 | #15 Solid BC
#15 Solid BC
#16 Flex BC
#15 Flex BC
#16 Flex BC
#16 Flex BC | FPE
FPE
FPE
FPE
FPE
FPE | FC
FC
FC
S
S | PE
PE
P2N
PE
P1
P1 | 0.240
0.242
0.242
0.242
0.242
0.242 | 600
300
300
300
600
300 | 0.2
0.2
0.3
0.2
0.3
0.3 | 0.7
0.8
0.9
0.8
0.9
0.9 | 2.3
2.5
2.8
2.8
3.1
3.1 | 7.4
8.0
8.4
9.6
11.2
14.0 | | RG-9 | Belden 8242 | 51 | 66 | 30.0 | #13 Flex SPC | PE | SCBC | P2N | 0.420 | 5000 | 0.2 | 0.6 | 2.1 | 8.2 | | RG-11
RG-11 | Belden 8213
Belden 8238 | 75
75 | 84
66 | 16.1
20.5 | #14 Solid BC
#18 Flex TC | FPE
PE | s
s | PE
P1 | 0.405
0.405 | 600
600 | 0.2
0.2 | 0.4
0.7 | 1.3
2.0 | 5.2
7.1 | | RG-58
RG-58
RG-58
RG-58
RG-58A
RG-58C
RG-58A | Belden 7807A
TMS LMR200
WM CQ124
Belden 8240
Belden 8219
Belden 8262
Belden 8259 | 50
50
52
52
53
50
50 | 85
83
66
66
73
66
66 | 23.7
24.5
28.5
28.5
26.5
30.8
30.8 | #18 SOIID BC
#17 SOIID BC
#20 SOIID BC
#20 SOIID BC
#20 Flex TC
#20 Flex TC
#20 Flex TC | FPE
FPE
PE
FPE
FPE
PE | FC
FC
S
S
S
S
S | PE
PE
PE
P1
P1
P2N
P1 | 0.195
0.195
0.195
0.193
0.193
0.195
0.195 | 300
300
1400
1900
300
1400
1900 | 0.3
0.4
0.3
0.4
0.4
0.4 | 1.0
1.3
1.1
1.3
1.4
1.5 | 3.0
3.2
4.3
3.8
4.5
4.9
5.4 | 9.7
10.5
14.3
14.5
18.1
21.5
22.8 | | RG-59
RG-59
RG-59
RG-59 | Belden 1426A
CXP 0815
Belden 8212
Belden 8241 | 75
75
75
75 | 83
82
78
66 | 16.3
16.2
17.3
20.4 | #20 Solid BC
#20 Solid BC
#20 Solid CCS
#23 Solid CCS | FPE
FPE
FPE
PE | s
s
s | P1
P1
P1
P1 | 0.242
0.232
0.242
0.242 | 300
300
300
1700 | 0.3
0.5
0.6
0.6 | 0.9
0.9
1.0
1.1 | 2.6
2.2
3.0
3.4 | 8.5
9.1
10.9
12.0 | | RG-62A
RG-62B
RG-63B | Belden 9269
Belden 8255
Belden 9857 | 93
93
125 | 84
84
84 | 13.5
13.5
9.7 | #22 Solid CCS
#24 Flex CCS
#22 Solid CCS | ASPE
ASPE
ASPE | s
s | P1
P2N
P2N | 0.240
0.242
0.405 | 750
750
750 | 0.3
0.3
0.2 | 0.9
0.9
0.5 | 2.7
2.9
1.5 | 8.7
11.0
5.8 | | RG-174 | CXP 183242
3 Belden 83242
Belden 7805R
Belden 8216 | 50
50
50
50 | 69.5
69.5
73.5
66 | 29.4
29.0
26.2
30.8 | #19 Solid SCCS
#19 Solid SCCS
#25 Solid BC
#26 Flex CCS | TFE
TFE
FPE
PE | D
D
FC
S | FEP
TFE
P1
P1 | 0.195
0.195
0.110
0.110 | 1900
1400
300
1100 | 0.3
0.3
0.6
1.9 | 1.1
1.1
2.0
3.3 | 3.8
3.9
6.5
8.4 | 12.8
13.5
21.3
34.0 | | RG-213
RG-214
RG-214
RG-216
RG-217
RG-217 | Belden 8267
CXP213
Belden 8268
Belden 9850
WM CQ217F
M17/78-RG217
M17/79-RG218 | 50
50
50
75
50
50 | 66
66
66
66
66
66 | 30.8
30.8
30.8
20.5
30.8
30.8
29.5 | #13 Flex BC
#13 Flex BC
#13 Flex SPC
#18 Flex TC
#10 Flex BC
#10 Solid BC
#4.5 Solid BC | PE
PE
PE
PE
PE
PE | s
s
d
d
d
d
s | P2N
P2N
P2N
P2N
PE
P2N
P2N
P2N | 0.405
0.405
0.425
0.425
0.545
0.545
0.870 | 3700
600
3700
3700
7000
7000
11000 | 0.2
0.2
0.2
0.2
0.1
0.1
0.1 | 0.6
0.6
0.7
0.4
0.4
0.2 | 1.9
2.0
1.9
2.0
1.4
1.4
0.8 | 8.0
8.2
8.0
7.1
5.2
5.2
3.4 | - For example: - Backpacking QRP operation low power - 30 meter band - Coax length: ≤10 ft. - Probably RG-174 - Why not use RG-218? The coax to my (pick one) beam, vertical, dipole is 100 ft. long and I work 30 meters - Should I use RG-8X or RG-8 or something better, such as Belden 9913? - -RG-8X = 0.9 dB/100 ft. at 10 MHz - RG-8 = 0.6 dB/100 ft. at 10 MHz - $\overline{-9913} = 0.4 \text{ dB}/100 \text{ ft. at } 10 \text{ MHz}$ I think the RG-8X will be just fine — The coax to my (pick one) beam, vertical, dipole is 100 ft. long and I work 2 meters (local repeaters) - Should I use RG-8X or RG-8 or something better, such as Belden 9913? - -RG-8X = 3.1 dB/100 ft. at 100 MHz - -RG-8 = 1.9 dB/100 ft. at 100 MHz - $-9913 = 1.3 \, dB/100 \, ft. \, at \, 100 \, MHz$ (xx) is a good choice – The coax to my (pick one) beam, vertical, dipole is 100 ft. long and I work 2 meters (weak signal) at 1500 watts. - Should I use RG-8X or RG-8 or something better, such as Belden 9913? - RG-8X = 3.1 dB/100 ft. at 100 MHz - RG-8 = 1.9 dB/100 ft. at 100 MHz - -9913 = 1.3 dB/100 ft. at 100 MHz (xx) is a good choice – - Remember the published parameters are for <u>Matched Lines</u>: - Reduce power for miss-matched conditions Unless you want the magic smoke to escape! #### Why is 50Ω the typical coax impedance? - Like everything else in life it's a compromise! - Desired maximum signal transfer impedance is 75Ω - Think center-fed, half-wave dipole - Desired maximum power transfer impedance is 37.5Ω - Think base-fed, ¼-wave, vertical dipole - You guessed it 50Ω is approx. halfway!